If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=112
We move all terms to the left:
3x^2-(112)=0
a = 3; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·3·(-112)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{21}}{2*3}=\frac{0-8\sqrt{21}}{6} =-\frac{8\sqrt{21}}{6} =-\frac{4\sqrt{21}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{21}}{2*3}=\frac{0+8\sqrt{21}}{6} =\frac{8\sqrt{21}}{6} =\frac{4\sqrt{21}}{3} $
| -12=8+f–2 | | 3x×x=112 | | 3t+11=t+5 | | 8y+2=2y-4 | | -3(2x+6)=-2(3+9) | | 1x=-2-15/2 | | p.120=0.5p | | k/4+9=33 | | 5/4x=31/8 | | k4+9=33 | | 3(x+1)+8=7 | | (19x-2-15/2=0)2 | | (19x-17/2=0)2 | | 4=t-5/3 | | 19x-2-15/2=0 | | 2/5m+6=-4 | | 825=40x+225 | | ((-2+1)^7)+(-6+x)^3=0 | | 9+1x=25+.50x | | -3(7-5x)+1=4(x+6) | | -20=x/5+5 | | 3v=v+30 | | 1/3(5-3(x-2))=1/6(x+1) | | 2s=s+99 | | -3(7x+3)=6x | | X2+1=x | | 2x-8=-4x+40 | | 4=6+a/4 | | 3y-21=51-11y | | 68=10b-2 | | Y=5x-1/5 | | 4-6x=-22 |